Using data to fuel Energy Transition

Jephraim Manansala

Chief Data Scientist, Energy Policy Team Institute for Climate and Sustainable Cities

×00.

X[2.0

X04.1

"Data is the new oil."

Both assets possess an immense value once processed and refined

Source: OECD/ IEA, 2017; PWC, 2022

2022

Saudi Aramco hastens digital

technology innovation

By Dominic Ellis

Article • Oil & Gas

March 22, 2021 • 3 mins

Acceleration of digital investment follows sharp fall in net income to \$49 billion in 2020...

Source: Energy Digital, 2021

Data is NOT the new oil... it is so much more!

Data is **abundant**, **reusable**, and **more valuable in the right hands**

1. Data is abundant in resource

2. Data is reusable and replicable

3. Data's value is in the eye of the beholder

30000 S

00000

15000

00001

5000

Despite the increasing value of data, **Energy and utilities are lagging** in terms of adoption of more advanced data technologies.

SOURCE: McKinsey Global Institute AI adoption and use survey; Digital Europe; Pushing the frontier; McKinsey Global Institute, June 2016; Digital America: A late of the haves and the have-mores, McKinsey Global Institute, December 2015, McKinsey Global Institute analysis, Sources for ASEAN index: press search of examples of AI development or adoption achieved or planned – indicative rather than exhaustive

Source: McKinsey & Company, 2017

"Data and digitalization is key towards achieving net zero for the energy sector."

Source: Ashurst, 2021

How can data solve these issues?

Impacts of Data on Energy Policy

Recurring Outages of Baseloads and its costs

VRE cost savings

Automatic fuel pass-through

- Partnership between CASE for Southeast Asia and Department of Energy (DOE)
- Study that utilizes the WESM Data to assess existing coal and variable renewable energy plants

Philippine Energy Mix in 2019

VRE avoided market costs in its past years of operation

Renewable has **reduced the settlement price of electricity by 28%** during peak hours even with less than 3% share in energy mix

Recurring outages by coal plants

Circulating Fluidized Bed

Frequent and recurring outages of plants **exceed their ERC-mandated limits**

Recurring outages by coal plants

On GOMP Scheduled Outage

Off

Frequent and recurring outages of plants are **not scheduled** based on the Grid Operations and Maintenance Program or GOMP.

Source: CASE PH, 2021

Costs from recurring outages by coal plants

The average generating cost in the spot market **significantly increases whenever a coal plant is unavailable**

1 BILLION peso increase in system

market costs in just two days of outages

(during the previous rotating blackouts in Luzon)

Automatic Fuel Pass-Through in PPAs

Automatic fuel pass through

It is the agreement between a power generator and a distribution utility to **sell electricity based on the current cost** of the benchmark fuel

Automatic Fuel Pass-Through in PPAs

Generation price breakdown shows the increase in prices of Coal that is **directly translated to the consumers**

● SBPL (Meralco) ● QPPL (Meralco) ● SMCPC (DLPC) ● TSI (DLPC)

Source: CASE PH, 2021; MERALCO, 2022; Davao Light, 2022

Impacts of Data on Forecasting and Planning

Asset management and maintenance

RE dispatch planning

Demand forecasting

Asset management and maintenance

- Different assets will have different maintenance programs based on economic benefit.
- Data and digitization supports the execution and optimization of maintenance workplans

Corrective maintenance ex: 'run to failure'

Preventive maintenance ex: periodic maintenance

Predictive maintenance ex: maintenance; reliability-centered maintenance

Renewable energy generation and dispatch planning

- Power generation from wind and solar is highly dependent on the weather.
- Generally, weather forecasts are used as the basis of forecasting of renewable energy
- Data and digitization can help integrate VRE by enabling grids to better determine how much additional conventional energy is further needed to match energy demand

Demand forecasting

- Since the balance between the power supply and demand across all time periods is necessary, demand forecasting is crucial.
- Electricity demand is highly influenced by the weather particularly, cooling loads.
- Data and digitization can aid in bottom-up forecasting which is necessary since loads are becoming more correlated due to the ongoing electrification of processes. Traditionally, a top-down approach is being done.

Impacts of Data on System Operations

Source: DNV GL, 2018

Wholesale Electricity Spot Market Operations

- WESM operations include scheduling, pricing, dispatch, and settlement.
- Data and digitization gives traders, retailers and aggregators a better insight in their current and future market positions and risks, leading to the development of tools that can swiftly act on these insights.

Decentralization of System Operations

- Wind and solar are energy sources that are geographically distributed and vary with changing weather conditions.
- **Bidirectional flow of electricity is possible,** which complicates the grid operation.
- Data and digitization can help developments towards more autonomous operational decision making, to better adapt to the continuously changing circumstances.

Smart Demand Response

- Demand response is the most economically feasible solution to provide flexibility to accommodate higher penetrations of renewable variable energy.
- This is done by **adjusting consumption to meet the profile of the generation**.
- Data and digitization can enable a higher degree of automation that is required to drive smart demand response

Barriers to Data Adoption

Data availability and Data silos

- A data silo consists of stored data that is not available to the ones that need the data.
- Combining different datasets can create more value through synergies.

Data Privacy and Ownership

Privacy and data ownership are becoming a major concern as more and more **detailed data are collected** from smart meters about household energy use.

Source: Newborough and Augood (1999), "Demand-side management opportunities for the UK domestic sector" (reproduced courtesy of the Institution of Engineering and Technology).

Cybersecurity

- Digitalization can make energy systems more vulnerable to digital risks, such as geomagnetic storms and cyber-attacks.
- Impacts can be minimized through:
 - Raised awareness, cyber hygiene, standard setting and staff training
 - Coordinated and proactive preparation by companies and governments
 - Design digital resilience in technologies and systems

Takeaways?

- Data and digitalization is essential to accelerate the energy transition, but alone will not lead to CO2 emission reduction.
- Data and digitalization is here to stay, we need to embrace it to move forward.

Data and digitalization fuel the energy transition.

Thank you!

jephraim@icsc.ngo

References:

[1] Data analytics in the electricity sector, DNV GL Group Technology & Research, 2018
[2] Digitization and Energy, International Energy Agency, 2017
[3] Data in the Energy Sector, Ashurst, 2021
[4] Digitalization: How digital technology can help the energy transition, Jesse Scott, Agora Energiewende, 2022

icsc.ngo | facebook.com/icsc.ngo